^

Detecting the primary lithology in regolith using pXRF and TerraSpec (VNIR-SWIR) results

Portable X-ray fluorescence (pXRF) instruments and visible near-infrared and short-wave infrared (VNIR-SWIR; TerraSpec 4 ASD) spectrometers are used throughout the mining cycle, from exploration through to mineral processing and environmental remediation, to provide, fast, real time, in field information on chemistry and mineralogy. It is the speed and flexibility of these instruments which allow them to be complementary tools in the field. Logging lithology through regolith can be a challenging exercise for geologists as the rocks have been strongly weathered to clays and oxides. However, with the aid of both a pXRF instrument, and Terraspec 4 ASD spectrometer, lithologies and alteration can be deciphered. The results from these instruments can be collected on site and in real time allowing the geologist to make decisions early and increase the chance of discovery. The results of these two entirely different methodologies can give the geologist confidence in the interpretation of results.

In this example from an Archean Au prospect at Pioneer Resources Kalpini South prospect, the geology in the regolith was better deciphered using pXRF and VNIR-SWIR technology. The differences in minerals (e.g., weathering of mafic rocks to nontronite) and spectral features (kaolinite Al-OH peak) identified different rock types in the regolith which was further supported by their distinct geochemistry (Zr vs Ti and V). The results from the study showed that the top of the Archean is deeper than previously thought and as a result gives implications for the exploration and detection of a geochemical and alteration signal from Au mineralisation.

Figure 1. Schematic cross-section through the Kalpini prospect highlighting the geology and alteration using geologist logs supplemented with VNIR-SWIR and pXRF results. The top of the Archean is difficult to identify in the regolith environment, however, with pXRF and VNIR-SWIR results it was distinguished more clearly. In particular, the weathered mafic lithology in the north was not identified during the geologist logging but was highlighted by its distinct geochemistry and occurrence of nontronite using pXRF and VNIR-SWIR results respectively.

Four lithologies have been observed at the prospect (felsic, mafic, transported, and alluvium; Fig. 1 and 2). With the use of pXRF, all lithologies can be discriminated on Zr vs Ti and V diagrams (Fig.3a and 3b). Figure 2 shows a downhole log through a regolith profile where the interpreted location for the top of the Archean has changed dramatically from 6 m using geologist logs to 46 m using pXRF results. The proper detection of the Archean has large implications for exploration and the ability to detect a geochemical anomaly from nearby mineralisation.

 

The discrimination of lithologies in the regolith was further complimented with a VNIR-SWIR spectrometer. The mafic lithology altered to nontronite, a clay that is not easily identified visually. The alluvium, transported, and felsic lithologies are all altered to kaolinite (Fig. 1 and 2). Differences in the spectral features of kaolinite allow these rock types to be distinguished on an Al-OH peak position versus Al-OH width and Al-OH depth plots (Fig. 3c and 3d). The base of hematite delineates the bottom of the transported lithology and the top of Archean (Fig. 1 and 2). The spectral features of the kaolinite and the detection of nontronite and hematite make the VNIR-SWIR a valuable tool for the geologist to detect the lithology in the regolith at the Kalpini prospect.

 

Ultimately, combining these tools can improve your geological model with enhanced geochemical and mineralogical data that can be acquired quickly and at little cost. The combined dataset can offer a number of benefits including helping to discriminate lithologies and alteration that are otherwise difficult to detect with visual logging; these results can then feed into your geometallurgial or exploration models, to name a few applications.

Figure 2. Drill hole through regolith at the Kalpini prospect showing the initial geologists log and the final log supplemented with pXRF and VNIR-SWIR results. Abbreviations: Kao 1 – kaolinite 1, Alluv. – alluvium.

Figure 3. (a-b). Portable XRF Zr, Ti, and V results for discriminating lithologies can be used in the regolith environment where rock types are difficult to distinguish. (c-d) In the regolith felsic, transported and alluvium lithologies are altered to kaolinite and can be distinguished using spectral features of the kaolinite Al-OH absorption feature. The mafic lithology is detected in the regolith by the occurrence of nontronite.

Written by Nick Jansen, 2016.
Complied by Naomi Potter, 2020.

Recent Articles

Painting a Bright Future for XRF

Findings of an ongoing regional evaluation study over concealed Proterozoic lithologies known to host magmatic nickel sulphides with potential to host other base-metal, gold and rare earth elements (“REE”) systems within the Fraser Range, Western Australia.

Read More »

Signal To Noise in XRF Technology

Findings of an ongoing regional evaluation study over concealed Proterozoic lithologies known to host magmatic nickel sulphides with potential to host other base-metal, gold and rare earth elements (“REE”) systems within the Fraser Range, Western Australia.

Read More »

GEMA: A Revolution in Material Analysis

Findings of an ongoing regional evaluation study over concealed Proterozoic lithologies known to host magmatic nickel sulphides with potential to host other base-metal, gold and rare earth elements (“REE”) systems within the Fraser Range, Western Australia.

Read More »

Now Available

Portable Spectral Services’ Schedule of Hire, Support Services & Fees is now available!

Enquire Now

Keywords: